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Analytic gradients in the improved BCS method
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The first derivatives of the total energy with respect to nuclear displacement have been
calculated in the framework of the Improved Bardeen–Cooper–Schrieffer (IBCS) method.
It permits the quick determination of the stationary points.

1. Introduction

The direct computation of the first derivatives of molecular energy with respect
to nuclear coordinates [20] has proven to be a powerful tool in the optimization of
equilibrium geometries and transition states [11,23,24]. The original development for
the Hartree–Fock wave function [8,13,25,26] has been extended to correlated wave
functions of the Generalized Valence Bond (GVB) type [12], to Multiconfiguration
(MCSCF) [2,7] and Configuration Interaction (CI) wave functions [3,14], and also to
Möller–Plesset perturbation theory [9,27,28].

Recently, we have proposed [18,19] a new method based on the Bardeen–Cooper–
Schrieffer (BCS) approach to electron correlation [1]. To overcome the fact that
the BCS state is not number conserving, the expectation value of the number par-
ticle operator was forced to take the given value n of electrons in the molecule.
Moreover, the expression for the total energy was improved with the inclusion of the
complete first-order Reduced Density Matrix (RDM). We demonstrated that with the
increase of the number of electrons, our approximation becomes an adequate treat-
ment for the electron correlation in large molecules. To distinguish our method from
other approaches to molecular electron correlation based also on the BCS state [4–
6,10,15–17,22,29], henceforward we will refer to it as the Improved BCS (IBCS)
method.

The aim of the current work is to provide the first derivatives of the IBCS total
energy with respect to nuclear coordinates so that our formalism could be implemented
for determining stationary points on multidimensional potential energy surfaces.
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2. The IBCS total energy

The electronic energy for a system with an even number n of electrons is given
by [19]

Eelec =
∑
q,σ

〈qσ|ĥ|qσ〉ρq +
1
2

∑
q,σ,q′,σ′

〈qσ, q′σ′|qσ, q′σ′〉PqPq′

− 1
2

∑
q,σ,q′,σ′

〈qσ, q′σ′|q′σ′, qσ〉PqPq′

+
1
2

∑
q,σ,q′,σ′

〈q,σ; q,−σ|q′,σ′; q′,−σ′〉σσ′ΦqΦq′ , (1)

where 〈qσ|ĥ|qσ〉 is the matrix element (qσ, qσ) of the kinetic energy and nuclear
attraction terms (one-electron operator ĥ), and 〈q1σ1, q2σ2|q′1σ′1, q′2σ

′
2〉 are the electronic

repulsion integrals. Functions |qσ〉 constitute a complete orthonormal set of single-
particle wave functions, i.e.,

〈q′σ′|qσ〉 = δq′,qδσ′ ,σ, (2)

where q denotes the orbital, and σ is the sign of the spin projection (it takes two
values +1 and −1). Pq and Φq are the variational parameters which also define the
occupation density:

ρq = Pq +
2Φ2

q

n− 1
. (3)

These parameters are not independent, they fulfill the following relations:

Pq = P 2
q + Φ2

q , (4)

2
∑
q

Pq = n. (5)

Integrating over the spin variables in equation (1), we get the following expression for
the electronic energy:

Eelec = 2
∑
q

〈q|ĥ|q〉ρq +
∑
q,q′

(
2〈qq′|qq′〉 − 〈qq′|qq′〉

)
PqPq′ +

∑
q,q′

〈qq|q′q′〉ΦqΦq′ . (6)

Let us expand our spatial orbitals in a fixed basis set:

|q〉 =
∑
ν

cvq |ν〉. (7)
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This is the well-known procedure of taking Molecular Orbitals as Linear Combination
of Atomic Orbitals (MOLCAO) [21]. Then, equation (6) becomes

Eelec =
∑
η,ν

Dην〈η|ĥ|ν〉+
1
2

∑
η,λ,ν,ξ

[
PηνPλξ〈ηλ||vξ〉 +

1
2

ΦηνΦξλ〈ην|ξλ〉
]

, (8)

where we have defined the following matrices:

Dην = 2
∑
q

cηqcνqρq, (9)

Pην = 2
∑
q

cηqcνqPq, (10)

Φην = 2
∑
q

cηqcνqΦq, (11)

and introduced the shorthand notation

〈ηλ||vξ〉 = 〈ηλ|vξ〉 − 1
2
〈ηλ|ξν〉. (12)

Matrix Dην is obviously the density matrix. It should be noted that spatial orbitals are
supposed to be real.

Finally, the total energy of a system with n electrons and N nuclei in the IBCS
approximation can be written as

E = Eelec + VNN = Eelec +
∑
A

∑
A>B

ZAZB
RAB

, (13)

where RAB = |RA − RB| is the distance between the Ath and Bth nuclei described
both by the position vectors RA and RB , respectively.

3. The energy gradients

The total energy, equation (13), depends on the molecular orbitals coefficients
{cηq}, on the parameters {Pq} and {Φq}, and on the nuclear coordinates {XA}. Its
derivative is given by

∂E

∂XA
=

∂E

∂XA
+
∑
η,q

∂E

∂cηq

∂cηq
∂XA

+
∑
q

[
∂E

∂Pq

∂Pq
∂XA

+
∂E

∂Φq

∂Φq

∂XA

]
, (14)

where ∂E/∂XA represents the derivative of all terms with explicit dependence on
the nuclear coordinate XA, and where the chain rule terms arise from the implicit
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dependence of the molecular orbital coefficients and the BCS variational parameters
on geometry. Differentiating equation (13) yields

∂E

∂XA
=
∑
η,ν

Dην
∂〈η|ĥ|ν〉
∂XA

+
1
2

∑
η,λ,ν,ξ

[
PηνPλξ

∂〈ηλ||vξ〉
∂XA

+
1
2

ΦηνΦξλ
∂〈ην|ξλ〉
∂XA

]
+
∂VNN
∂XA

, (15)

∂E

∂cηq
= 4

∑
ν

[
ρq〈η|ĥ|ν〉+ Pq

∑
λ,ξ

Pλξ〈ηλ||vξ〉 +
1
2

Φq

∑
λ,ξ

〈ην|ξλ〉Φξλ

]
cνq

= 4
∑
ν

Vq(ην)cνq , (16)

∂E

∂Pq
= 2

∑
ην

cηqcνq〈η|ĥ|ν〉+ 2
∑
η,λ,ν,ξ

cηqcνqPλξ〈ηλ||vξ〉 = 2Eq, (17)

∂E

∂Φq
=

16Φq

n− 1

∑
ην

cηqcνq〈η|ĥ|ν〉+
∑
η,λ,ν,ξ

cηqcνq〈ην|ξλ〉Φξλ = 2Cq. (18)

In the above equations, the notations introduced in [19] have been used. Vq(ην) is the
generalized Fock matrix, Eq is the Hartree–Fock like energy, and Cq is the correlation
function.

Let us now recall the equations obtained [19] after variation of the energy with
respect to cq , Pq and Φq: ∑

ν

Vq(ην)cνq = εq
∑
ν

Sηνcνq, (19)

Eq = χ+ µq

(
1
2
− Pq

)
, (20)

Cq = −µqΦq, (21)

where εq, µq and χ are the Lagrangian multipliers introduced [19] to satisfy the
constrains (2), (4), and (5). Sην is the overlap matrix.

Combining these expressions, we get

∂E

∂XA
=
∑
η,ν

Dην
∂〈η|ĥ|ν〉
∂XA

+
1
2

∑
η,λ,ν,ξ

[
PηνPλξ

∂〈ηλ||vξ〉
∂XA

+
1
2

ΦηνΦξλ
∂〈ην|ξλ〉
∂XA

]
+
∂VNN
∂XA
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+ 4
∑
q

εq
∑
η,ν

∂cηq
∂XA

Sηνcνq

+
∑
q

{[
2χ+ µq(1− 2Pq)

] ∂Pq
∂XA

− 2µqΦq
∂Φq

∂XA

}
. (22)

To evaluate the derivative of the coefficients, let us rewrite the orthonormality
condition of the molecular orbitals (2) in the new basis set:∑

η,ν

cηqSηνcνq′ = δqq′ . (23)

Differentiating equation (23), it follows that

2
∑
η,ν

∂cηq
∂XA

Sηνcνq′ = −
∑
η,ν

cηq
∂Sην
∂XA

cνq′ . (24)

Differentiating, also, equations (4) and (5) we obtain

2Pq
∂Pq
∂XA

+ 2Φq
∂Φq

∂XA
=

∂Pq
∂XA

, (25)

∑
q

∂Pq
∂XA

= 0. (26)

Taking into account equations (25) and (26), the last sum in equation (22) becomes
zero. Hence, the final expression of the energy gradients reduces to

∂E

∂XA
=
∑
η,ν

Dην
∂〈η|ĥ|ν〉
∂XA

+
1
2

∑
η,λ,ν,ξ

[
PηνPλξ

∂〈ηλ||vξ〉
∂XA

+
1
2

ΦηνΦξλ
∂〈ην|ξλ〉
∂XA

]
−
∑
η,ν

Qην
∂Sην
∂XA

+
∂VNN
∂XA

, (27)

where we have defined

Qην = 2
∑
q

cηqcνqεq. (28)

The derivative of the energy can be thus calculated using the molecular orbital
coefficients and the derivatives of the overlap and the one- and two-electron integrals.

4. Conclusions

The IBCS analytic gradients coincide by their appearance with those obtained in
the HF approximation. Even more, they generalize them. Now the orbital energies,
the orbital coefficients, and the orbital occupations contain information concerning
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electron correlation. Besides, a new term arises from correlation between electrons
with anti-parallel spins. However, it is not necessary to compute new derivatives since
this term includes only the two-electron integral derivatives. The resemblance between
the IBCS and HF gradients will make easier the implementation of IBCS gradients
from the available software for HF calculations in order to determine the stationary
points including correlation effects.
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